Simultaneous optical recording of evoked and spontaneous transients of membrane potential and intracellular calcium concentration with high spatio-temporal resolution.
نویسندگان
چکیده
We have developed a system for simultaneous optical recording of transients of membrane potential and intracellular calcium concentration from mammalian brain slice preparations with high spatio-temporal resolution. Simultaneous recording was achieved by using two dedicated photodetectors together with two fluorescent indicators. Specifically, the calcium-sensitive dye Calcium Orange and the voltage-sensitive dye RH-414 were selected because they have overlapping excitation spectra, but separable emission spectra. Transverse guinea pig hippocampal slices were double-loaded by bath application of the membrane-permeant form of Calcium Orange and RH-414. Transients of intracellular calcium concentration and membrane potential associated with evoked neural activity in hippocampal areas CA1 and CA3 were recorded. Furthermore, we have recorded calcium and voltage transients associated with spontaneous epileptiform activity induced by bath application of an epileptogenic drug, 4-aminopyridine. The use of photodiode matrices (10 x 10 elements each) as detectors gives the high spatial (200 x 200 microns/element with a 10 x objective) and temporal resolution (570 microseconds/frame). The recording system also includes a CCD camera for obtaining images of the preparation and overlaying the image with the optically detected signals. A software package has been developed for setting up the experimental protocol(s) and for collecting, processing, displaying, and analyzing the data in an user-friendly, windows-based environment.
منابع مشابه
Optical Mapping of Action Potentials and Calcium Transients in the Mouse Heart
The mouse heart is a popular model for cardiovascular studies due to the existence of low cost technology for genetic engineering in this species. Cardiovascular physiological phenotyping of the mouse heart can be easily done using fluorescence imaging employing various probes for transmembrane potential (V(m;)), calcium transients (CaT), and other parameters. Excitation-contraction coupling is...
متن کاملComparison of the effect of quasitrapezoidal and rectangular pulses on bio- electrical activity, calcium spike properties and afterhyperpolarization potentials of Fl cells of Helix aspersa using intracellular recording
While the effect of changes of stimulus waveform (quasitrapezoidal and rectangular current pulses) on nerve activation is clear, but there is no evidence on the effect of quasitrapezoidal pulses on ionic currents of cellular membrane. In the present study, the effect of depolarizing quasi-trapezoidal current pulses, in comparison with that of depolarizing rectangular current pulses, on firing...
متن کاملIntracellular calcium transients and potassium current oscillations evoked by glutamate in cultured rat astrocytes.
Glutamate responses in cultured rat astrocytes from cerebella of neonatal rats were investigated using the perforated-patch configuration to record membrane currents without rundown of intracellular messenger cascades, and microfluorometric measurements to measure the intracellular Ca2+ concentration ([Ca2+]i) and intracellular pH (pHi) with fura-2 AM and 2',7'-bis-(2-carboxyethyl)-5,6-carboxyf...
متن کاملSimultaneous Quantification of Spatially Discordant Alternans in Voltage and Intracellular Calcium in Langendorff-Perfused Rabbit Hearts and Inconsistencies with Models of Cardiac Action Potentials and Ca Transients
Rationale: Discordant alternans, a phenomenon in which the action potential duration (APDs) and/or intracellular calcium transient durations (CaDs) in different spatial regions of cardiac tissue are out of phase, present a dynamical instability for complex spatial dispersion that can be associated with long-QT syndrome (LQTS) and the initiation of reentrant arrhythmias. Because the use of numer...
متن کاملOptical single-channel recording: imaging Ca2+ flux through individual ion channels with high temporal and spatial resolution.
Developments in imaging technology now enable visualization of the functioning of individual ion channels in living cells: something previously possible only by the electrophysiological patch-clamp technique. We review techniques that track channel gating via changes in intracellular [Ca2+] resulting from openings of Ca(2+)-permeable channels. Spatial and temporal resolution are optimized by mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 60 1-2 شماره
صفحات -
تاریخ انتشار 1995